PLANAR P-ELASTICAE AND
 Rotational Linear Weingarten SURFACES

Álvaro Pámpano Llarena
XXth International Conference Geometry, Integrability and Quantization

Varna, June 2-7 2018

Introduction

Introduction

Elastic Curve

Introduction

Elastic Curve

Following the model of D . Bernoulli, a curve $\gamma: I \rightarrow \mathbb{R}^{2}$ is called elastica if it is a critical point of the bending energy

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \kappa^{2}
$$

Introduction

Elastic Curve
Following the model of D . Bernoulli, a curve $\gamma: I \rightarrow \mathbb{R}^{2}$ is called elastica if it is a critical point of the bending energy

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \kappa^{2}
$$

- Classical Variational Problem. In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod.

Introduction

Elastic Curve

Following the model of D . Bernoulli, a curve $\gamma: I \rightarrow \mathbb{R}^{2}$ is called elastica if it is a critical point of the bending energy

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \kappa^{2}
$$

- Classical Variational Problem. In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod.
- In 1744, L. Euler published his classification of the planar elastic curves.

Introduction

Elastic Curve

Following the model of D . Bernoulli, a curve $\gamma: I \rightarrow \mathbb{R}^{2}$ is called elastica if it is a critical point of the bending energy

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \kappa^{2}
$$

- Classical Variational Problem. In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod.
- In 1744, L. Euler published his classification of the planar elastic curves.
- Since then, elastica related problems have shown remarkable applications to many different fields:

Introduction

Elastic Curve

Following the model of D. Bernoulli, a curve $\gamma: I \rightarrow \mathbb{R}^{2}$ is called elastica if it is a critical point of the bending energy

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \kappa^{2}
$$

- Classical Variational Problem. In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod.
- In 1744, L. Euler published his classification of the planar elastic curves.
- Since then, elastica related problems have shown remarkable applications to many different fields:

Helfreich-Canham Models in Biophysics, Worldsheets for Kleinert-Polyakov Action in String Theory, Fluid Dynamics..

Index

Index

1. Planar p-Elasticae

Index

1. Planar p-Elasticae
2. Binormal Evolution of p-Elasticae

Index

1. Planar p-Elasticae
2. Binormal Evolution of p-Elasticae
3. Rotational Linear Weingarten Surfaces

Index

1. Planar p-Elasticae
2. Binormal Evolution of p-Elasticae
3. Rotational Linear Weingarten Surfaces
4. Remarkable Particular Cases

Planar p-Elasticae

PLANAR P-ELASTICAE

1. Varational Problem

Planar p-Elasticae

1. Varational Problem
2. Involved Classical Energies

Planar p-Elasticae

1. Varational Problem
2. Involved Classical Energies
3. Euler-Lagrange Equation

Planar p-Elasticae

1. Varational Problem
2. Involved Classical Energies
3. Euler-Lagrange Equation
4. Killing Fields along p-Elasticae

Planar p-Elasticae

1. Varational Problem
2. Involved Classical Energies
3. Euler-Lagrange Equation
4. Killing Fields along p-Elasticae
5. First Integral of Euler-Lagrange

Variational Problem

Variational Problem

p-Elastic Functional [3]

Variational Problem

p-Elastic Functional [3]
We are going to consider the curvature energy functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}=\int_{0}^{L}(\kappa(s)-\mu)^{p} d s
$$

where μ and $p \in \mathbb{R}$ are fixed real constants, acting on $\Omega_{p_{o} p_{1}}$.

Variational PROBLEM

p-Elastic Functional [3]

We are going to consider the curvature energy functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}=\int_{0}^{L}(\kappa(s)-\mu)^{p} d s
$$

where μ and $p \in \mathbb{R}$ are fixed real constants, acting on $\Omega_{p_{o} p_{1}}$.

- We denote by $\Omega_{p_{0} p_{1}}$ the space of smooth immersed curves of \mathbb{R}^{2} joining two points of it, and verifying that $\kappa-\mu>0$.

Variational Problem

P-Elastic Functional [3]

We are going to consider the curvature energy functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}=\int_{0}^{L}(\kappa(s)-\mu)^{p} d s
$$

where μ and $p \in \mathbb{R}$ are fixed real constants, acting on $\Omega_{p_{o} p_{1}}$.

- We denote by $\Omega_{p_{0} p_{1}}$ the space of smooth immersed curves of \mathbb{R}^{2} joining two points of it, and verifying that $\kappa-\mu>0$.
- Take into account that $\kappa=\mu$ would be a global minimum if we were considering $L^{1}([0, L])$ as the space of curves.

Involved Classical Energies

Notice that the p-Elastic functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}
$$

Involved Classical Energies

Notice that the p-Elastic functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}
$$

involves the following classical energies:

Involved Classical Energies

Notice that the p-Elastic functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}
$$

involves the following classical energies:

- If $p=0$, we have the Length functional.

Involved Classical Energies

Notice that the p-Elastic functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}
$$

involves the following classical energies:

- If $p=0$, we have the Length functional. Critical curves are geodesics.

Involved Classical Energies

Notice that the p-Elastic functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}
$$

involves the following classical energies:

- If $p=0$, we have the Length functional.

Critical curves are geodesics.

- If $p=1, \boldsymbol{\Theta}$ is, basically, the Total Curvature functional.

Involved Classical Energies

Notice that the p-Elastic functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}
$$

involves the following classical energies:

- If $p=0$, we have the Length functional. Critical curves are geodesics.
- If $p=1, \boldsymbol{\Theta}$ is, basically, the Total Curvature functional. Any planar curve is critical.

Involved Classical Energies

Notice that the p-Elastic functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}
$$

involves the following classical energies:

- If $p=0$, we have the Length functional.

Critical curves are geodesics.

- If $p=1, \boldsymbol{\Theta}$ is, basically, the Total Curvature functional. Any planar curve is critical.
- If $p=2$ and $\mu=0, \boldsymbol{\Theta}$ is the Bending energy.

Involved Classical Energies

Notice that the p-Elastic functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}
$$

involves the following classical energies:

- If $p=0$, we have the Length functional.

Critical curves are geodesics.

- If $p=1, \boldsymbol{\Theta}$ is, basically, the Total Curvature functional. Any planar curve is critical.
- If $p=2$ and $\mu=0, \boldsymbol{\Theta}$ is the Bending energy.

And, the critical curves are elastic curves.

Involved Classical Energies

Notice that the p-Elastic functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}
$$

involves the following classical energies:

- If $p=0$, we have the Length functional.

Critical curves are geodesics.

- If $p=1, \boldsymbol{\Theta}$ is, basically, the Total Curvature functional.

Any planar curve is critical.

- If $p=2$ and $\mu=0, \boldsymbol{\Theta}$ is the Bending energy.

And, the critical curves are elastic curves.

- If $p=\frac{1}{2}$ and $\mu=0$, we have a variational problem studied by Blaschke in 1930

Involved Classical Energies

Notice that the p-Elastic functional

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}
$$

involves the following classical energies:

- If $p=0$, we have the Length functional.

Critical curves are geodesics.

- If $p=1, \boldsymbol{\Theta}$ is, basically, the Total Curvature functional.

Any planar curve is critical.

- If $p=2$ and $\mu=0, \boldsymbol{\Theta}$ is the Bending energy.

And, the critical curves are elastic curves.

- If $p=\frac{1}{2}$ and $\mu=0$, we have a variational problem studied by Blaschke in 1930, obtaining catenaries.

Euler-Lagrange Equation

Euler-Lagrange Equation

The Euler-Lagrange equation for the curvature energy functional $\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}$, in \mathbb{R}^{2} with $p \neq 0,1$ can be written as

$$
\frac{d^{2}}{d s^{2}}\left((\kappa-\mu)^{p-1}\right)+\kappa^{2}(\kappa-\mu)^{p-1}-\frac{1}{p} \kappa(\kappa-\mu)^{p}=0 .
$$

Euler-Lagrange Equation

The Euler-Lagrange equation for the curvature energy functional $\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}$, in \mathbb{R}^{2} with $p \neq 0,1$ can be written as

$$
\frac{d^{2}}{d s^{2}}\left((\kappa-\mu)^{p-1}\right)+\kappa^{2}(\kappa-\mu)^{p-1}-\frac{1}{p} \kappa(\kappa-\mu)^{p}=0 .
$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)

Euler-Lagrange Equation

The Euler-Lagrange equation for the curvature energy functional $\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}$, in \mathbb{R}^{2} with $p \neq 0,1$ can be written as

$$
\frac{d^{2}}{d s^{2}}\left((\kappa-\mu)^{p-1}\right)+\kappa^{2}(\kappa-\mu)^{p-1}-\frac{1}{p} \kappa(\kappa-\mu)^{p}=0 .
$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)

Generalized EMP Equation [3]

Euler-Lagrange Equation

The Euler-Lagrange equation for the curvature energy functional $\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}$, in \mathbb{R}^{2} with $p \neq 0,1$ can be written as

$$
\frac{d^{2}}{d s^{2}}\left((\kappa-\mu)^{p-1}\right)+\kappa^{2}(\kappa-\mu)^{p-1}-\frac{1}{p} \kappa(\kappa-\mu)^{p}=0 .
$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)

Generalized EMP Equation [3]

The Euler-Lagrange equation is a generalized EMP equation.

Euler-Lagrange Equation

The Euler-Lagrange equation for the curvature energy functional $\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}$, in \mathbb{R}^{2} with $p \neq 0,1$ can be written as

$$
\frac{d^{2}}{d s^{2}}\left((\kappa-\mu)^{p-1}\right)+\kappa^{2}(\kappa-\mu)^{p-1}-\frac{1}{p} \kappa(\kappa-\mu)^{p}=0 .
$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)

Generalized EMP Equation [3]

The Euler-Lagrange equation is a generalized EMP equation. Indeed, for $p=\frac{1}{2}$, we get the proper EMP equation

$$
\phi^{\prime \prime}+\mu^{2} \phi=\frac{1}{\phi^{3}}
$$

Killing Fields along p-Elasticae

Killing Fields along p-Elasticae

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position.

Killing Fields along p-Elasticae

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

$$
W(v)(\bar{t}, 0)=W(\kappa)(\bar{t}, 0)=0
$$

Killing Fields along p-Elasticae

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

$$
W(v)(\bar{t}, 0)=W(\kappa)(\bar{t}, 0)=0
$$

Killing Vector Fields along γ [1]

The vector fields along γ defined by

$$
\begin{aligned}
\mathcal{I} & =(\kappa-\mu)^{p-1} B \\
\mathcal{J} & =((p-1) \kappa+\mu)(\kappa-\mu)^{p-1} T+p \frac{d}{d s}\left((\kappa-\mu)^{p-1}\right) N
\end{aligned}
$$

Killing Fields along p-Elasticae

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

$$
W(v)(\bar{t}, 0)=W(\kappa)(\bar{t}, 0)=0
$$

Killing Vector Fields along γ [1]

The vector fields along γ defined by

$$
\begin{aligned}
\mathcal{I} & =(\kappa-\mu)^{p-1} B \\
\mathcal{J} & =((p-1) \kappa+\mu)(\kappa-\mu)^{p-1} T+p \frac{d}{d s}\left((\kappa-\mu)^{p-1}\right) N
\end{aligned}
$$

are Killing vector fields along γ, if and only if, γ verifies the Euler-Lagrange equation.

First Integral of Euler-Lagrange

First Integral of Euler-Lagrange

Theorem [3]

The derivative of the function $\langle\mathcal{J}, \mathcal{J}\rangle$ along the critical curves is zero. Thus, we have that

$$
p^{2}|\mathcal{J}|^{2}=d
$$

for any positive constant d.

First Integral of Euler-Lagrange

Theorem [3]

The derivative of the function $\langle\mathcal{J}, \mathcal{J}\rangle$ along the critical curves is zero. Thus, we have that

$$
p^{2}|\mathcal{J}|^{2}=d
$$

for any positive constant d.
Therefore, we can integrate the Euler-Lagrange equation, obtaining

$$
\left(\kappa^{\prime}\right)^{2}=\frac{(\kappa-\mu)^{2}}{p^{2}(p-1)^{2}}\left(d(\kappa-\mu)^{2(1-p)}-((p-1) \kappa+\mu)^{2}\right) .
$$

Binormal Evolution of p-Elasticae

Binormal Evolution of p-Elasticae

1. Associated Killing Vector Field

Binormal Evolution of p-Elasticae

1. Associated Killing Vector Field
2. Evolution under Binormal Flow

Binormal Evolution of p-Elasticae

1. Associated Killing Vector Field
2. Evolution under Binormal Flow
3. Geometric Properties of this Binormal Evolution Surface

Associated Killing Vector Field

Associated Killing Vector Field

Unique Extension

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^{3}.

Associated Killing Vector Field

Unique Extension

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^{3}.
Moreover, this extension is unique.

Associated Killing Vector Field

Unique Extension

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^{3}.
Moreover, this extension is unique.
Thus, any planar p-Elasticae has two associated Killing vector fields, which extend \mathcal{I} and \mathcal{J}.

Associated Killing Vector Field

Unique Extension

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^{3}.
Moreover, this extension is unique.
Thus, any planar p-Elasticae has two associated Killing vector fields, which extend \mathcal{I} and \mathcal{J}.

- Killing vector fields in \mathbb{R}^{3} are the infinitesimal generators of isometries.

Associated Killing Vector Field

Unique Extension

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^{3}.
Moreover, this extension is unique.
Thus, any planar p-Elasticae has two associated Killing vector fields, which extend \mathcal{I} and \mathcal{J}.

- Killing vector fields in \mathbb{R}^{3} are the infinitesimal generators of isometries.
- Any Killing vector field in \mathbb{R}^{3} can be assumed to be of helical type

$$
\lambda_{1} X+\lambda_{2} V
$$

Evolution under Binormal Flow

Evolution under Binormal Flow

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^{3}.

Evolution under Binormal Flow

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^{3}.

1. Consider the Killing vector field along γ in the direction of the binormal, that is,

$$
\mathcal{I}=(\kappa-\mu)^{p-1} B
$$

Evolution under Binormal Flow

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^{3}.

1. Consider the Killing vector field along γ in the direction of the binormal, that is,

$$
\mathcal{I}=(\kappa-\mu)^{p-1} B
$$

2. Let's denote by ξ the associated Killing vector field on \mathbb{R}^{3} that extends \mathcal{I}.

Evolution under Binormal Flow

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^{3}.

1. Consider the Killing vector field along γ in the direction of the binormal, that is,

$$
\mathcal{I}=(\kappa-\mu)^{p-1} B
$$

2. Let's denote by ξ the associated Killing vector field on \mathbb{R}^{3} that extends \mathcal{I}.
3. Since \mathbb{R}^{3} is complete, we have the one-parameter group of isometries determined by the flow of ξ is given by $\left\{\phi_{t}, t \in \mathbb{R}\right\}$.

Evolution under Binormal Flow

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^{3}.

1. Consider the Killing vector field along γ in the direction of the binormal, that is,

$$
\mathcal{I}=(\kappa-\mu)^{p-1} B
$$

2. Let's denote by ξ the associated Killing vector field on \mathbb{R}^{3} that extends \mathcal{I}.
3. Since \mathbb{R}^{3} is complete, we have the one-parameter group of isometries determined by the flow of ξ is given by $\left\{\phi_{t}, t \in \mathbb{R}\right\}$.
4. Now, construct the surface $S_{\gamma}:=\left\{x(s, t):=\phi_{t}(\gamma(s))\right\}$.

Geometric Properties of this BES

The surface S_{γ} is a ξ-invariant surface,

Geometric Properties of this BES

The surface S_{γ} is a ξ-invariant surface, and it verifies:

- S_{γ} is a rotational surface.

Geometric Properties of this BES

The surface S_{γ} is a ξ-invariant surface, and it verifies:

- S_{γ} is a rotational surface.

Theorem [1]

Let γ be a planar curve, then, the BES with initial condition γ is either, a flat isoparametric surface, if κ is constant; or a rotational surface, if κ is not constant.

Geometric Properties of this BES

The surface S_{γ} is a ξ-invariant surface, and it verifies:

- S_{γ} is a rotational surface.

Theorem [1]

Let γ be a planar curve, then, the BES with initial condition γ is either, a flat isoparametric surface, if κ is constant; or a rotational surface, if κ is not constant.

- The principal curvatures of S_{γ} are related by $\kappa_{1}=a \kappa_{2}+b$.

Geometric Properties of this BES

The surface S_{γ} is a ξ-invariant surface, and it verifies:

- S_{γ} is a rotational surface.

Theorem [1]

Let γ be a planar curve, then, the BES with initial condition γ is either, a flat isoparametric surface, if κ is constant; or a rotational surface, if κ is not constant.

- The principal curvatures of S_{γ} are related by $\kappa_{1}=a \kappa_{2}+b$.

Theorem [4]

Let γ be a planar p-Elasticae, then, the BES generated by γ verifies $\kappa_{1}=a \kappa_{2}+b$, for

$$
a=\frac{p}{p-1}, \quad b=\frac{-\mu}{p-1} .
$$

Rotational Linear Weingarten Surfaces

Rotational Linear Weingarten Surfaces

1. Weingarten Surfaces

Rotational Linear Weingarten Surfaces

1. Weingarten Surfaces
2. Classification of Rotational Linear Weingarten Surfaces

Rotational Linear Weingarten Surfaces

1. Weingarten Surfaces
2. Classification of Rotational Linear Weingarten Surfaces
3. Characterization of Profile Curves

Weingarten Surfaces

A Weingarten surface in \mathbb{R}^{3} is a surface where the two principal curvatures κ_{1} and κ_{2} satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$.

Weingarten Surfaces

A Weingarten surface in \mathbb{R}^{3} is a surface where the two principal curvatures κ_{1} and κ_{2} satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$. Here we consider the linear relation

$$
\kappa_{1}=a \kappa_{2}+b
$$

where $a, b \in \mathbb{R}, a \neq 0$.

Weingarten Surfaces

A Weingarten surface in \mathbb{R}^{3} is a surface where the two principal curvatures κ_{1} and κ_{2} satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$. Here we consider the linear relation

$$
\kappa_{1}=a \kappa_{2}+b
$$

where $a, b \in \mathbb{R}, a \neq 0$.
Well-known families of linear Weingarten surfaces are:

Weingarten Surfaces

A Weingarten surface in \mathbb{R}^{3} is a surface where the two principal curvatures κ_{1} and κ_{2} satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$. Here we consider the linear relation

$$
\kappa_{1}=a \kappa_{2}+b
$$

where $a, b \in \mathbb{R}, a \neq 0$.
Well-known families of linear Weingarten surfaces are:

- Umbilical Surfaces (Plane and Sphere)

Weingarten Surfaces

A Weingarten surface in \mathbb{R}^{3} is a surface where the two principal curvatures κ_{1} and κ_{2} satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$. Here we consider the linear relation

$$
\kappa_{1}=a \kappa_{2}+b
$$

where $a, b \in \mathbb{R}, a \neq 0$.
Well-known families of linear Weingarten surfaces are:

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)

Weingarten Surfaces

A Weingarten surface in \mathbb{R}^{3} is a surface where the two principal curvatures κ_{1} and κ_{2} satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$. Here we consider the linear relation

$$
\kappa_{1}=a \kappa_{2}+b
$$

where $a, b \in \mathbb{R}, a \neq 0$.
Well-known families of linear Weingarten surfaces are:

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)
- Constant Mean Curvature Surfaces

Weingarten Surfaces

A Weingarten surface in \mathbb{R}^{3} is a surface where the two principal curvatures κ_{1} and κ_{2} satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$. Here we consider the linear relation

$$
\kappa_{1}=a \kappa_{2}+b
$$

where $a, b \in \mathbb{R}, a \neq 0$.
Well-known families of linear Weingarten surfaces are:

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)
- Constant Mean Curvature Surfaces (Rotational Case: Delaunay Surfaces)

Classification ($b=0$)

Classification $(b=0)$

Theorem [4]

The rotational linear Weingarten surfaces satisfying the relation $\kappa_{1}=a \kappa_{2}, a \neq 0$, are planes, ovaloids and catenoid-type surfaces.

Classification ($b=0$)

Theorem [4]

The rotational linear Weingarten surfaces satisfying the relation $\kappa_{1}=a \kappa_{2}, a \neq 0$, are planes, ovaloids and catenoid-type surfaces.

Moreover,

- Case $a>0$. The rotational surface is an ovaloid.

Classification ($b=0$)

Theorem [4]

The rotational linear Weingarten surfaces satisfying the relation $\kappa_{1}=a \kappa_{2}, a \neq 0$, are planes, ovaloids and catenoid-type surfaces.

Moreover,

- Case $a<0$. The rotational surface is of catenoid-type.

(A) $a<-1$

(B) $a \in[-1,0)$

Classification $(a>0$ And $b \neq 0)$

Classification $(a>0$ AND $b \neq 0)$

Theorem [4]

Let $a>0$ and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

Classification $(a>0$ And $b \neq 0)$

Theorem [4]

Let $a>0$ and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

- Vesicle-Type Surfaces

Classification $(a>0$ And $b \neq 0)$

Theorem [4]

Let $a>0$ and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

- Pinched Spheroid

Classification $(a>0$ And $b \neq 0)$

Theorem [4]
Let $a>0$ and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

- Immersed Spheroid

Classification $(a>0$ And $b \neq 0)$

Theorem [4]

Let $a>0$ and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

- Cylindrical Antinodoid-Type Surfaces

Classification $(a>0$ And $b \neq 0)$

Theorem [4]
Let $a>0$ and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

- Antinodoid-Type Surfaces

Classification $(a<0$ And $b \neq 0)$

Classification $(a<0$ And $b \neq 0)$

Theorem [4]

Let $a<0$ and $b \neq 0$. The rotational linear Weingarten surfaces are unduloid-type, circular cylinders, spheres and nodoid-type.

Classification $(a<0$ And $b \neq 0)$

Theorem [4]

Let $a<0$ and $b \neq 0$. The rotational linear Weingarten surfaces are unduloid-type, circular cylinders, spheres and nodoid-type.

- Unduloid-Type Surfaces

Classification $(a<0$ And $b \neq 0)$

Theorem [4]

Let $a<0$ and $b \neq 0$. The rotational linear Weingarten surfaces are unduloid-type, circular cylinders, spheres and nodoid-type.

- Nodoid-Type Surfaces

Characterization of Profile Curves

Characterization of Profile Curves

A rotational surface M can be, locally, described by

$$
M=S_{\gamma}:=\left\{x(s, t)=\phi_{t}(\gamma(s))\right\}
$$

Characterization of Profile Curves

A rotational surface M can be, locally, described by

$$
M=S_{\gamma}:=\left\{x(s, t)=\phi_{t}(\gamma(s))\right\}
$$

where,

- ϕ_{t} is the rotation,

Characterization of Profile Curves

A rotational surface M can be, locally, described by

$$
M=S_{\gamma}:=\left\{x(s, t)=\phi_{t}(\gamma(s))\right\}
$$

where,

- ϕ_{t} is the rotation, and
- $\gamma(s)$ is the profile curve (that is, the curve everywhere orthogonal to the orbits of ϕ_{t}).

Characterization of Profile Curves

A rotational surface M can be, locally, described by

$$
M=S_{\gamma}:=\left\{x(s, t)=\phi_{t}(\gamma(s))\right\}
$$

where,

- ϕ_{t} is the rotation, and
- $\gamma(s)$ is the profile curve (that is, the curve everywhere orthogonal to the orbits of ϕ_{t}).
Then,

Theorem [4]

Let M be a rotational linear Weingarten surface and let $\gamma(s)$ be its profile curve.

Characterization of Profile Curves

A rotational surface M can be, locally, described by

$$
M=S_{\gamma}:=\left\{x(s, t)=\phi_{t}(\gamma(s))\right\}
$$

where,

- ϕ_{t} is the rotation, and
- $\gamma(s)$ is the profile curve (that is, the curve everywhere orthogonal to the orbits of ϕ_{t}).
Then,

Theorem [4]

Let M be a rotational linear Weingarten surface and let $\gamma(s)$ be its profile curve. Then, if $a \neq 1, \gamma$ is a planar p-Elastic curve for

$$
\mu=\frac{-b}{a-1}, \quad p=\frac{a}{a-1} .
$$

Summary of the Main Results

Summary of the Main Results

BES + Planar p-Elastica \Longleftrightarrow Rotational LW

Summary of the Main Results

BES + Planar p-Elastica \Longleftrightarrow Rotational LW
Binormal evolution surfaces generated from planar p-Elasticae, are precisely, rotational linear Weingarten surfaces with $a \neq 1$.

Summary of the Main Results

BES + Planar p-Elastica \Longleftrightarrow Rotational LW
Binormal evolution surfaces generated from planar p-Elasticae, are precisely, rotational linear Weingarten surfaces with $a \neq 1$.
$\Longleftarrow[4]$
Every rotational linear Weingarten surface (with $a \neq 1$) admits a geodesic foliation by planar p-Elasticae.

Summary of the Main Results

BES + Planar p-Elastica \Longleftrightarrow Rotational LW

Binormal evolution surfaces generated from planar p-Elasticae, are precisely, rotational linear Weingarten surfaces with $a \neq 1$.
$\Longleftarrow[4]$
Every rotational linear Weingarten surface (with $a \neq 1$) admits a geodesic foliation by planar p-Elasticae.
$\Longrightarrow[1]+[4]$
The evolution under the binormal flow of any planar p-Elasticae generates rotational linear Weingarten surfaces.

Remarkable Particular Cases

Remarkable Particular Cases

1. Classic Elastic Curves and Mylar Balloons

Remarkable Particular Cases

1. Classic Elastic Curves and Mylar Balloons
2. Extended Blaschke's Energy and Delaunay Surfaces

Classic Elastic Curves

Take $p=2$ and $\mu=0$ in the p-elastic energy. That is, we have the bending energy

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \kappa^{2}
$$

Classic Elastic Curves

Take $p=2$ and $\mu=0$ in the p-elastic energy. That is, we have the bending energy

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \kappa^{2}
$$

Critical curves of bending energy are elastic curves.

Classic Elastic Curves

Take $p=2$ and $\mu=0$ in the p-elastic energy. That is, we have the bending energy

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \kappa^{2}
$$

Critical curves of bending energy are elastic curves.

Curvature of Planar Elastic Curves

Solving the Euler-Lagrange equations, we obtain that the non-geodesic planar elastic curves have curvature given by

$$
\kappa(s)=\kappa_{o} c n\left(\frac{\kappa_{o}}{\sqrt{2}} s, \frac{\sqrt{2}}{2}\right) .
$$

Classic Elastic Curves

Take $p=2$ and $\mu=0$ in the p-elastic energy. That is, we have the bending energy

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \kappa^{2}
$$

Critical curves of bending energy are elastic curves.

Curvature of Planar Elastic Curves

Solving the Euler-Lagrange equations, we obtain that the non-geodesic planar elastic curves have curvature given by

$$
\kappa(s)=\kappa_{o} c n\left(\frac{\kappa_{o}}{\sqrt{2}} s, \frac{\sqrt{2}}{2}\right) .
$$

- $\kappa_{o}=\kappa_{o}(d)$ is a constant (the maximum curvature) and $c n$ denotes the Jacobi cosine.

Mylar Balloons

Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_{1}=2 \kappa_{2}$.

Mylar Balloons

Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_{1}=2 \kappa_{2}$.
Furthermore, the converse is also true.

Mylar Balloons

Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_{1}=2 \kappa_{2}$. Furthermore, the converse is also true.

- These rotational surfaces are essentially unique (up to translations and homotheties).

Mylar Balloons

Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_{1}=2 \kappa_{2}$.
Furthermore, the converse is also true.

- These rotational surfaces are essentially unique (up to translations and homotheties). They are called Mylar Balloons.

Mylar Balloons

Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_{1}=2 \kappa_{2}$.
Furthermore, the converse is also true.

- These rotational surfaces are essentially unique (up to translations and homotheties). They are called Mylar Balloons.
- We also know that, planar elastic curves verify $x(s)=\frac{2 \kappa(s)}{\sqrt{d}}$.

Mylar Balloons

Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_{1}=2 \kappa_{2}$.
Furthermore, the converse is also true.

- These rotational surfaces are essentially unique (up to translations and homotheties). They are called Mylar Balloons.
- We also know that, planar elastic curves verify $x(s)=\frac{2 \kappa(s)}{\sqrt{d}}$.
- Thus, after rotating we obtain the parametrization of Mylar Balloons:

$$
x(s, \theta)=\frac{1}{\sqrt{d}}\left(2 \kappa \cos \theta, 2 \kappa \sin \theta, \int \kappa^{2} d s\right)
$$

where $\kappa(s)$ is the curvature of γ.

Extended Blaschke's Energy

Take $p=\frac{1}{2}$ in the p-Elastic energy, that is,

$$
\boldsymbol{\Theta}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu}=\int_{0}^{L} \sqrt{\kappa(s)-\mu} d s
$$

Extended Blaschke's Energy

Take $p=\frac{1}{2}$ in the p-Elastic energy, that is,

$$
\boldsymbol{\Theta}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu}=\int_{0}^{L} \sqrt{\kappa(s)-\mu} d s
$$

1. If $\kappa=\mu$ then γ is an absolute minima for $\boldsymbol{\Theta}$.

Extended Blaschke's Energy

Take $p=\frac{1}{2}$ in the p -Elastic energy, that is,

$$
\boldsymbol{\Theta}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu}=\int_{0}^{L} \sqrt{\kappa(s)-\mu} d s
$$

1. If $\kappa=\mu$ then γ is an absolute minima for $\boldsymbol{\Theta}$.
2. Now, let γ be a non-constant curvature critical curve.

Extended Blaschke's Energy

Take $p=\frac{1}{2}$ in the p -Elastic energy, that is,

$$
\boldsymbol{\Theta}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu}=\int_{0}^{L} \sqrt{\kappa(s)-\mu} d s
$$

1. If $\kappa=\mu$ then γ is an absolute minima for $\boldsymbol{\Theta}$.
2. Now, let γ be a non-constant curvature critical curve. Then,

$$
\kappa(s)=\frac{4 d}{1+16 d^{2} s^{2}}
$$

for every $d>0$ if $\mu=0$.

Extended Blaschke's Energy

Take $p=\frac{1}{2}$ in the p -Elastic energy, that is,

$$
\boldsymbol{\Theta}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu}=\int_{0}^{L} \sqrt{\kappa(s)-\mu} d s
$$

1. If $\kappa=\mu$ then γ is an absolute minima for $\boldsymbol{\Theta}$.
2. Now, let γ be a non-constant curvature critical curve. Then,

$$
\kappa(s)=\frac{4 d}{1+16 d^{2} s^{2}}
$$

for every $d>0$ if $\mu=0$. Or, if $\mu \neq 0$,

$$
\kappa(s)=\frac{2 \mu\left(\omega^{2}+\omega \sin 2 \mu s\right)}{1+\omega^{2}+2 \omega \sin 2 \mu s}
$$

where $\omega^{2}=1+\frac{\mu}{d}$.

Delaunay Curves

Case $\kappa=\mu$.

Delaunay Curves

Case $\kappa=\mu$. Critical curves are either lines $(\mu=0)$ or circles. They are roulettes of conic foci.

Delaunay Curves

Case $\kappa=\mu$. Critical curves are either lines $(\mu=0)$ or circles. They are roulettes of conic foci.
For the critical curves with non-constant curvature we have

Delaunay Curves

Case $\kappa=\mu$. Critical curves are either lines $(\mu=0)$ or circles. They are roulettes of conic foci.
For the critical curves with non-constant curvature we have

Geometric Characterization [2]

Non-constant curvature critical curves for the extended Blaschke's energy in \mathbb{R}^{2} are, precisely, the roulettes of conic foci with non-constant curvature.

Delaunay Curves

Case $\kappa=\mu$. Critical curves are either lines $(\mu=0)$ or circles. They are roulettes of conic foci.
For the critical curves with non-constant curvature we have

Geometric Characterization [2]

Non-constant curvature critical curves for the extended Blaschke's energy in \mathbb{R}^{2} are, precisely, the roulettes of conic foci with non-constant curvature.

- If $\mu=0$, we have catenaries.

Delaunay Curves

Case $\kappa=\mu$. Critical curves are either lines $(\mu=0)$ or circles. They are roulettes of conic foci.
For the critical curves with non-constant curvature we have

Geometric Characterization [2]

Non-constant curvature critical curves for the extended Blaschke's energy in \mathbb{R}^{2} are, precisely, the roulettes of conic foci with non-constant curvature.

- If $\mu=0$, we have catenaries.
- If $\mu \neq 0$ and $\omega<1$, they are nodaries.

Delaunay Curves

Case $\kappa=\mu$. Critical curves are either lines $(\mu=0)$ or circles. They are roulettes of conic foci.
For the critical curves with non-constant curvature we have

Geometric Characterization [2]

Non-constant curvature critical curves for the extended Blaschke's energy in \mathbb{R}^{2} are, precisely, the roulettes of conic foci with non-constant curvature.

- If $\mu=0$, we have catenaries.
- If $\mu \neq 0$ and $\omega<1$, they are nodaries.
- If $\mu \neq 0$ and $\omega>1$, they are undularies.

Delaunay Surfaces

In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^{3}

Delaunay Surfaces

In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^{3}

Delaunay Surfaces

A rotational surface has constant mean curvature, if and only if, its profile curve is the roulette of a conic.

Delaunay Surfaces

In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^{3}

Delaunay Surfaces

A rotational surface has constant mean curvature, if and only if, its profile curve is the roulette of a conic.

Characterization of Delaunay Surfaces [2]

A Delaunay surface is, precisely, a binormal evolution surface with a critical curve for the extended Blaschke's energy as initial condition.

Delaunay Surfaces

In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^{3}

Delaunay Surfaces

A rotational surface has constant mean curvature, if and only if, its profile curve is the roulette of a conic.

Characterization of Delaunay Surfaces [2]

A Delaunay surface is, precisely, a binormal evolution surface with a critical curve for the extended Blaschke's energy as initial condition. Moreover, the constant mean curvature is given by

$$
H=-\mu .
$$

References

1. J. Arroyo, O. J. Garay and A. Pámpano, Binormal Motion of Curves with Constant Torsion in 3-Spaces, Adv. Math. Phys., 2017 (2017).
2. J. Arroyo, O. J. Garay and A. Pámpano, Constant Mean Curvature Invariant Surfaces and Extremals of Curvature Energies, J. Math. Annal. and App., 462 (2018), 1644-1668.
3. O. J. Garay and A. Pámpano, A Note on p-Elasticae and the Generalized EMP Equation, submitted.
4. R. López and A. Pámpano, Classification of Rotational Surfaces in Euclidean Space Satisfying a Linear Relation Between their Principal Curvatures, submitted.

THE END

Acknowledgements: Research partially supported by MINECO-FEDER, MTM2014-54804-P and by Gobierno Vasco, IT1094-16.

