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Introduction

Elastic Curve

Following the model of D. Bernoulli, a curve γ : I → R2 is called
elastica if it is a critical point of the bending energy

Θ(γ) =

∫
γ
κ2 .

• Classical Variational Problem. In 1691, J. Bernoulli proposed
to determine the final shape of a flexible rod.

• In 1744, L. Euler published his classification of the planar
elastic curves.

• Since then, elastica related problems have shown remarkable
applications to many different fields:

Helfreich-Canham Models in Biophysics, Worldsheets for
Kleinert-Polyakov Action in String Theory, Fluid Dynamics..
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Variational Problem

p-Elastic Functional [3]

We are going to consider the curvature energy functional

Θ(γ) =

∫
γ

(κ− µ)p =

∫ L

0
(κ(s)− µ)p ds ,

where µ and p ∈ R are fixed real constants, acting on Ωpop1 .

• We denote by Ωpop1 the space of smooth immersed curves of
R2 joining two points of it, and verifying that κ− µ > 0.

• Take into account that κ = µ would be a global minimum if
we were considering L1([0, L]) as the space of curves.
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Involved Classical Energies

Notice that the p-Elastic functional

Θ(γ) =

∫
γ

(κ− µ)p ,

involves the following classical energies:

• If p = 0, we have the Length functional.
Critical curves are geodesics.

• If p = 1, Θ is, basically, the Total Curvature functional.
Any planar curve is critical.

• If p = 2 and µ = 0, Θ is the Bending energy.
And, the critical curves are elastic curves.

• If p = 1
2 and µ = 0, we have a variational problem studied by

Blaschke in 1930, obtaining catenaries.
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Euler-Lagrange Equation

The Euler-Lagrange equation for the curvature energy functional
Θ(γ) =

∫
γ (κ− µ)p , in R2 with p 6= 0, 1 can be written as

d2

ds2
(
(κ− µ)p−1

)
+ κ2 (κ− µ)p−1 − 1

p
κ (κ− µ)p = 0 .

Under suitable boundary conditions, solutions of these equations
are critical curves for our energy functional. (p-Elastic Curves)

Generalized EMP Equation [3]

The Euler-Lagrange equation is a generalized EMP equation.
Indeed, for p = 1

2 , we get the proper EMP equation

φ′′ + µ2 φ =
1

φ3
.
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Killing Fields along p-Elasticae

A vector field W along γ, which infinitesimally preserves unit speed
parametrization is said to be a Killing vector field along γ if it
evolves in the direction of W without changing shape, only
position. That is, if the following equations hold

W (v)(t̄, 0) = W (κ)(t̄, 0) = 0 .

Killing Vector Fields along γ [1]

The vector fields along γ defined by

I = (κ− µ)p−1 B ,

J = ((p − 1)κ+ µ) (κ− µ)p−1 T + p
d

ds

(
(κ− µ)p−1

)
N

are Killing vector fields along γ, if and only if, γ verifies the
Euler-Lagrange equation.
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First Integral of Euler-Lagrange

Theorem [3]

The derivative of the function 〈J ,J 〉 along the critical curves is
zero. Thus, we have that

p2|J |2 = d ,

for any positive constant d .

Therefore, we can integrate the Euler-Lagrange equation, obtaining

(κ′)2 =
(κ− µ)2

p2(p − 1)2

(
d (κ− µ)2(1−p) − ((p − 1)κ+ µ)2

)
.
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Associated Killing Vector Field

Unique Extension

A vector field along a curve is a Killing vector field along the curve,
if and only if, it extends to a Killing field on the whole R3.
Moreover, this extension is unique.

Thus, any planar p-Elasticae has two associated Killing vector
fields, which extend I and J .

• Killing vector fields in R3 are the infinitesimal generators of
isometries.

• Any Killing vector field in R3 can be assumed to be of helical
type

λ1X + λ2V .
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Evolution under Binormal Flow

Take γ any planar p-Elasticae contained in any totally geodesic
surface of R3.

1. Consider the Killing vector field along γ in the direction of the
binormal, that is,

I = (κ− µ)p−1 B.

2. Let’s denote by ξ the associated Killing vector field on R3

that extends I.

3. Since R3 is complete, we have the one-parameter group of
isometries determined by the flow of ξ is given by {φt , t ∈ R}.

4. Now, construct the surface Sγ := {x(s, t) := φt(γ(s))}.
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Geometric Properties of this BES

The surface Sγ is a ξ-invariant surface,

and it verifies:

• Sγ is a rotational surface.

Theorem [1]

Let γ be a planar curve, then, the BES with initial condition γ is
either, a flat isoparametric surface, if κ is constant; or a rotational
surface, if κ is not constant.

• The principal curvatures of Sγ are related by κ1 = a κ2 + b.

Theorem [4]

Let γ be a planar p-Elasticae, then, the BES generated by γ
verifies κ1 = a κ2 + b, for

a =
p

p − 1
, b =

−µ
p − 1
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Weingarten Surfaces

A Weingarten surface in R3 is a surface where the two principal
curvatures κ1 and κ2 satisfy a certain relation Φ(κ1, κ2) = 0.

Here
we consider the linear relation

κ1 = aκ2 + b,

where a, b ∈ R, a 6= 0.

Well-known families of linear Weingarten surfaces are:

• Umbilical Surfaces (Plane and Sphere)

• Isoparametric Surfaces (Circular Cylinders)

• Constant Mean Curvature Surfaces
(Rotational Case: Delaunay Surfaces)
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Classification (b = 0)

Theorem [4]

The rotational linear Weingarten surfaces satisfying the relation
κ1 = aκ2, a 6= 0, are planes, ovaloids and catenoid-type surfaces.

Moreover,

• Case a > 0. The rotational surface is an ovaloid.
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Classification (b = 0)

Theorem [4]

The rotational linear Weingarten surfaces satisfying the relation
κ1 = aκ2, a 6= 0, are planes, ovaloids and catenoid-type surfaces.

Moreover,

• Case a < 0. The rotational surface is of catenoid-type.

(a) a < −1 (b) a ∈ [−1, 0)



Classification (a > 0 and b 6= 0)

Theorem [4]

Let a > 0 and b 6= 0. The rotational linear Weingarten surfaces are
either ovaloids, circular cylinders or

• Vesicle-Type Surfaces



Classification (a > 0 and b 6= 0)

Theorem [4]

Let a > 0 and b 6= 0. The rotational linear Weingarten surfaces are
either ovaloids, circular cylinders or

• Vesicle-Type Surfaces



Classification (a > 0 and b 6= 0)

Theorem [4]

Let a > 0 and b 6= 0. The rotational linear Weingarten surfaces are
either ovaloids, circular cylinders or

• Vesicle-Type Surfaces



Classification (a > 0 and b 6= 0)

Theorem [4]

Let a > 0 and b 6= 0. The rotational linear Weingarten surfaces are
either ovaloids, circular cylinders or
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Let a < 0 and b 6= 0. The rotational linear Weingarten surfaces are
unduloid-type, circular cylinders, spheres and nodoid-type.
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Classification (a < 0 and b 6= 0)

Theorem [4]

Let a < 0 and b 6= 0. The rotational linear Weingarten surfaces are
unduloid-type, circular cylinders, spheres and nodoid-type.

• Nodoid-Type Surfaces



Characterization of Profile Curves

A rotational surface M can be, locally, described by

M = Sγ := {x(s, t) = φt(γ(s))},
where,

• φt is the rotation, and

• γ(s) is the profile curve (that is, the curve everywhere
orthogonal to the orbits of φt).

Then,

Theorem [4]

Let M be a rotational linear Weingarten surface and let γ(s) be its
profile curve. Then, if a 6= 1, γ is a planar p-Elastic curve for

µ =
−b
a− 1

, p =
a

a− 1
.
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Summary of the Main Results

BES + Planar p-Elastica ⇐⇒ Rotational LW

Binormal evolution surfaces generated from planar p-Elasticae, are
precisely, rotational linear Weingarten surfaces with a 6= 1.

⇐= [4]
Every rotational linear Weingarten surface (with a 6= 1) admits a
geodesic foliation by planar p-Elasticae.

=⇒ [1]+[4]
The evolution under the binormal flow of any planar p-Elasticae
generates rotational linear Weingarten surfaces.
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Classic Elastic Curves

Take p = 2 and µ = 0 in the p-elastic energy. That is, we have the
bending energy

Θ(γ) =

∫
γ
κ2 .

Critical curves of bending energy are elastic curves.

Curvature of Planar Elastic Curves

Solving the Euler-Lagrange equations, we obtain that the
non-geodesic planar elastic curves have curvature given by

κ(s) = κo cn

(
κo√

2
s,

√
2

2

)
.

• κo = κo(d) is a constant (the maximum curvature) and cn
denotes the Jacobi cosine.
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Mylar Balloons

Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic
curve is a rotational surface verifying κ1 = 2κ2.

Furthermore, the converse is also true.

• These rotational surfaces are essentially unique (up to
translations and homotheties). They are called Mylar
Balloons.

• We also know that, planar elastic curves verify x(s) = 2κ(s)√
d

.

• Thus, after rotating we obtain the parametrization of Mylar
Balloons:

x(s, θ) =
1√
d

(
2κ cos θ, 2κ sin θ ,

∫
κ2 ds

)
,

where κ(s) is the curvature of γ.
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Extended Blaschke’s Energy

Take p = 1
2 in the p-Elastic energy, that is,

Θ(γ) :=

∫
γ

√
κ− µ =

∫ L

0

√
κ(s)− µ ds .

1. If κ = µ then γ is an absolute minima for Θ.

2. Now, let γ be a non-constant curvature critical curve. Then,

κ(s) =
4d

1 + 16d2s2
,

for every d > 0 if µ = 0. Or, if µ 6= 0,

κ(s) =
2µ(ω2 + ω sin 2µs)

1 + ω2 + 2ω sin 2µs
,

where ω2 = 1 + µ
d .
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Delaunay Curves

Case κ = µ.

Critical curves are either lines (µ = 0) or circles. They
are roulettes of conic foci.
For the critical curves with non-constant curvature we have

Geometric Characterization [2]

Non-constant curvature critical curves for the extended Blaschke’s
energy in R2 are, precisely, the roulettes of conic foci with
non-constant curvature.

• If µ = 0, we have catenaries.

• If µ 6= 0 and ω < 1, they are nodaries.

• If µ 6= 0 and ω > 1, they are undularies.
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Delaunay Surfaces

In 1841, Delaunay introduced a way of constructing rotationally
symmetric CMC surfaces in R3

Delaunay Surfaces

A rotational surface has constant mean curvature, if and only if, its
profile curve is the roulette of a conic.

Characterization of Delaunay Surfaces [2]

A Delaunay surface is, precisely, a binormal evolution surface with
a critical curve for the extended Blaschke’s energy as initial
condition. Moreover, the constant mean curvature is given by

H = −µ.
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