

Planar p-Elasticae and Rotational Linear Weingarten Surfaces

Álvaro Pámpano Llarena

XXth International Conference Geometry, Integrability and Quantization

Varna, June 2-7 2018

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

ELASTIC CURVE

ELASTIC CURVE

Following the model of D. Bernoulli, a curve $\gamma : I \to \mathbb{R}^2$ is called elastica if it is a critical point of the bending energy

$$\boldsymbol{\Theta}(\gamma) = \int_{\gamma} \kappa^2 \, .$$

ELASTIC CURVE

Following the model of D. Bernoulli, a curve $\gamma : I \to \mathbb{R}^2$ is called elastica if it is a critical point of the bending energy

$${oldsymbol \Theta}(\gamma) = \int_{\gamma} \kappa^2 \, .$$

• Classical Variational Problem. In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod.

ELASTIC CURVE

Following the model of D. Bernoulli, a curve $\gamma : I \to \mathbb{R}^2$ is called elastica if it is a critical point of the bending energy

$${oldsymbol \Theta}(\gamma) = \int_{\gamma} \kappa^2 \, .$$

• Classical Variational Problem. In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod.

• In 1744, L. Euler published his classification of the planar elastic curves.

ELASTIC CURVE

Following the model of D. Bernoulli, a curve $\gamma : I \to \mathbb{R}^2$ is called elastica if it is a critical point of the bending energy

$${oldsymbol \Theta}(\gamma) = \int_{\gamma} \kappa^2 \, .$$

- Classical Variational Problem. In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod.
- In 1744, L. Euler published his classification of the planar elastic curves.
- Since then, elastica related problems have shown remarkable applications to many different fields:

ELASTIC CURVE

Following the model of D. Bernoulli, a curve $\gamma : I \to \mathbb{R}^2$ is called elastica if it is a critical point of the bending energy

$$\Theta(\gamma) = \int_{\gamma} \kappa^2 \, .$$

- Classical Variational Problem. In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod.
- In 1744, L. Euler published his classification of the planar elastic curves.
- Since then, elastica related problems have shown remarkable applications to many different fields: Helfreich-Canham Models in Biophysics, Worldsheets for Kleinert-Polyakov Action in String Theory, Fluid Dynamics..

<□ > < @ > < E > < E > E のQ @

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

1. Planar p-Elasticae

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Planar p-Elasticae
- 2. Binormal Evolution of p-Elasticae

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Planar p-Elasticae
- 2. Binormal Evolution of p-Elasticae
- 3. Rotational Linear Weingarten Surfaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Planar p-Elasticae
- 2. Binormal Evolution of p-Elasticae
- 3. Rotational Linear Weingarten Surfaces
- 4. Remarkable Particular Cases

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

1. Varational Problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Varational Problem
- 2. Involved Classical Energies

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Varational Problem
- 2. Involved Classical Energies
- 3. Euler-Lagrange Equation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Varational Problem
- 2. Involved Classical Energies
- 3. Euler-Lagrange Equation
- 4. Killing Fields along p-Elasticae

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1. Varational Problem
- 2. Involved Classical Energies
- 3. Euler-Lagrange Equation
- 4. Killing Fields along p-Elasticae
- 5. First Integral of Euler-Lagrange

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

P-ELASTIC FUNCTIONAL [3]

P-ELASTIC FUNCTIONAL [3]

We are going to consider the curvature energy functional

$$\mathbf{\Theta}(\gamma) = \int_{\gamma} (\kappa - \mu)^p = \int_0^L (\kappa(s) - \mu)^p \, ds \, ,$$

where μ and $p \in \mathbb{R}$ are fixed real constants, acting on $\Omega_{p_o p_1}$.

P-ELASTIC FUNCTIONAL [3]

We are going to consider the curvature energy functional

$$\mathbf{\Theta}(\gamma) = \int_{\gamma} (\kappa - \mu)^p = \int_0^L (\kappa(s) - \mu)^p \, ds \, ,$$

where μ and $p \in \mathbb{R}$ are fixed real constants, acting on $\Omega_{p_o p_1}$.

• We denote by $\Omega_{p_o p_1}$ the space of smooth immersed curves of \mathbb{R}^2 joining two points of it, and verifying that $\kappa - \mu > 0$.

P-ELASTIC FUNCTIONAL [3]

We are going to consider the curvature energy functional

$$\mathbf{\Theta}(\gamma) = \int_{\gamma} (\kappa - \mu)^p = \int_0^L (\kappa(s) - \mu)^p \, ds \, ,$$

where μ and $p \in \mathbb{R}$ are fixed real constants, acting on $\Omega_{p_o p_1}$.

- We denote by $\Omega_{p_op_1}$ the space of smooth immersed curves of \mathbb{R}^2 joining two points of it, and verifying that $\kappa \mu > 0$.
- Take into account that κ = μ would be a global minimum if we were considering L¹([0, L]) as the space of curves.

Notice that the p-Elastic functional

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \left(\kappa - \mu
ight)^{oldsymbol{p}} \; ,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notice that the p-Elastic functional

$${oldsymbol \Theta}(\gamma) = \int_{\gamma} \left(\kappa - \mu
ight)^{{oldsymbol p}} \; ,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

involves the following classical energies:

Notice that the p-Elastic functional

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} (\kappa - \mu)^{oldsymbol{p}} \; ,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

involves the following classical energies:

• If p = 0, we have the Length functional.

Notice that the p-Elastic functional

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \left(\kappa - \mu
ight)^{oldsymbol{p}} \, ,$$

involves the following classical energies:

If p = 0, we have the Length functional.
 Critical curves are geodesics.

Notice that the p-Elastic functional

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} (\kappa - \mu)^{oldsymbol{p}} \; ,$$

involves the following classical energies:

- If p = 0, we have the Length functional.
 Critical curves are geodesics.
- If p = 1, Θ is, basically, the Total Curvature functional.

Notice that the p-Elastic functional

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} (\kappa - \mu)^{oldsymbol{p}} \; ,$$

involves the following classical energies:

- If p = 0, we have the Length functional.
 Critical curves are geodesics.
- If p = 1, Θ is, basically, the Total Curvature functional. Any planar curve is critical.

Notice that the p-Elastic functional

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} (\kappa - \mu)^{oldsymbol{p}} \; ,$$

involves the following classical energies:

- If p = 0, we have the Length functional.
 Critical curves are geodesics.
- If p = 1, Θ is, basically, the Total Curvature functional. Any planar curve is critical.

• If p = 2 and $\mu = 0$, Θ is the Bending energy.

Notice that the p-Elastic functional

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} (\kappa - \mu)^{oldsymbol{p}} \; ,$$

involves the following classical energies:

- If p = 0, we have the Length functional.
 Critical curves are geodesics.
- If p = 1, Θ is, basically, the Total Curvature functional. Any planar curve is critical.

 If p = 2 and μ = 0, Θ is the Bending energy. And, the critical curves are elastic curves.

Notice that the p-Elastic functional

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} (\kappa - \mu)^{oldsymbol{p}} \; ,$$

involves the following classical energies:

- If p = 0, we have the Length functional.
 Critical curves are geodesics.
- If p = 1, Θ is, basically, the Total Curvature functional. Any planar curve is critical.
- If *p* = 2 and μ = 0, Θ is the Bending energy. And, the critical curves are elastic curves.
- If $p = \frac{1}{2}$ and $\mu = 0$, we have a variational problem studied by Blaschke in 1930

Notice that the p-Elastic functional

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} (\kappa - \mu)^{oldsymbol{p}} \; ,$$

involves the following classical energies:

- If p = 0, we have the Length functional.
 Critical curves are geodesics.
- If p = 1, Θ is, basically, the Total Curvature functional. Any planar curve is critical.
- If *p* = 2 and μ = 0, Θ is the Bending energy. And, the critical curves are elastic curves.
- If $p = \frac{1}{2}$ and $\mu = 0$, we have a variational problem studied by Blaschke in 1930, obtaining catenaries.

EULER-LAGRANGE EQUATION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Euler-Lagrange equation for the curvature energy functional $\Theta(\gamma) = \int_{\gamma} (\kappa - \mu)^{p}$, in \mathbb{R}^{2} with $p \neq 0, 1$ can be written as

$$\frac{d^2}{ds^2}\left((\kappa-\mu)^{p-1}\right)+\kappa^2\left(\kappa-\mu\right)^{p-1}-\frac{1}{p}\kappa\left(\kappa-\mu\right)^p=0\,.$$

$$\frac{d^2}{ds^2}\left((\kappa-\mu)^{p-1}\right)+\kappa^2\left(\kappa-\mu\right)^{p-1}-\frac{1}{p}\kappa\left(\kappa-\mu\right)^p=0\,.$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)

$$\frac{d^2}{ds^2}\left((\kappa-\mu)^{p-1}\right)+\kappa^2\left(\kappa-\mu\right)^{p-1}-\frac{1}{p}\kappa\left(\kappa-\mu\right)^p=0\,.$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)

GENERALIZED EMP EQUATION [3]

$$\frac{d^2}{ds^2}\left((\kappa-\mu)^{p-1}\right)+\kappa^2\left(\kappa-\mu\right)^{p-1}-\frac{1}{p}\kappa\left(\kappa-\mu\right)^p=0\,.$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)

GENERALIZED EMP EQUATION [3]

The Euler-Lagrange equation is a generalized EMP equation.

$$\frac{d^2}{ds^2}\left((\kappa-\mu)^{p-1}\right)+\kappa^2\left(\kappa-\mu\right)^{p-1}-\frac{1}{p}\kappa\left(\kappa-\mu\right)^p=0\,.$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)

GENERALIZED EMP EQUATION [3]

The Euler-Lagrange equation is a generalized EMP equation. Indeed, for $p = \frac{1}{2}$, we get the proper EMP equation

$$\phi'' + \mu^2 \phi = \frac{1}{\phi^3}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position.

・ロト・日本・モート モー うへで

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

 $W(v)(\overline{t},0) = W(\kappa)(\overline{t},0) = 0$.

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

 $W(\mathbf{v})(\overline{t},0) = W(\kappa)(\overline{t},0) = 0$.

Killing Vector Fields along γ [1]

The vector fields along γ defined by

$$\mathcal{I} = (\kappa - \mu)^{p-1} B,$$

$$\mathcal{J} = ((p-1)\kappa + \mu) (\kappa - \mu)^{p-1} T + p \frac{d}{ds} ((\kappa - \mu)^{p-1}) N$$

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

 $W(v)(\overline{t},0) = W(\kappa)(\overline{t},0) = 0$.

Killing Vector Fields along γ [1]

The vector fields along γ defined by

$$\begin{aligned} \mathcal{I} &= (\kappa - \mu)^{p-1} B, \\ \mathcal{J} &= ((p-1)\kappa + \mu) (\kappa - \mu)^{p-1} T + p \frac{d}{ds} \left((\kappa - \mu)^{p-1} \right) N \end{aligned}$$

are Killing vector fields along γ , if and only if, γ verifies the Euler-Lagrange equation.

FIRST INTEGRAL OF EULER-LAGRANGE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

FIRST INTEGRAL OF EULER-LAGRANGE

THEOREM [3]

The derivative of the function $\langle {\cal J}, {\cal J}\rangle$ along the critical curves is zero. Thus, we have that

$$p^2|\mathcal{J}|^2=d\,,$$

for any positive constant d.

FIRST INTEGRAL OF EULER-LAGRANGE

THEOREM [3]

The derivative of the function $\langle {\cal J}, {\cal J}\rangle$ along the critical curves is zero. Thus, we have that

$$p^2|\mathcal{J}|^2=d\,,$$

for any positive constant d.

Therefore, we can integrate the Euler-Lagrange equation, obtaining

$$(\kappa')^2 = rac{(\kappa-\mu)^2}{p^2(p-1)^2} \left(d \left(\kappa-\mu
ight)^{2(1-p)} - \left((p-1)\kappa+\mu
ight)^2
ight) \,.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - のへの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Associated Killing Vector Field

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Associated Killing Vector Field
- 2. Evolution under Binormal Flow

- 1. Associated Killing Vector Field
- 2. Evolution under Binormal Flow
- 3. Geometric Properties of this Binormal Evolution Surface

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

UNIQUE EXTENSION

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^3 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

UNIQUE EXTENSION

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^3 . Moreover, this extension is unique.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

UNIQUE EXTENSION

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^3 . Moreover, this extension is unique.

Thus, any planar p-Elasticae has two associated Killing vector fields, which extend \mathcal{I} and \mathcal{J} .

UNIQUE EXTENSION

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^3 . Moreover, this extension is unique.

Thus, any planar p-Elasticae has two associated Killing vector fields, which extend ${\cal I}$ and ${\cal J}.$

• Killing vector fields in \mathbb{R}^3 are the infinitesimal generators of isometries.

UNIQUE EXTENSION

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^3 . Moreover, this extension is unique.

Thus, any planar p-Elasticae has two associated Killing vector fields, which extend ${\cal I}$ and ${\cal J}.$

- Killing vector fields in \mathbb{R}^3 are the infinitesimal generators of isometries.
- Any Killing vector field in \mathbb{R}^3 can be assumed to be of helical type

$$\lambda_1 X + \lambda_2 V$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^3 .

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^3 .

1. Consider the Killing vector field along γ in the direction of the binormal, that is,

$$\mathcal{I} = (\kappa - \mu)^{p-1} B.$$

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^3 .

1. Consider the Killing vector field along γ in the direction of the binormal, that is,

$$\mathcal{I} = (\kappa - \mu)^{p-1} B.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

2. Let's denote by ξ the associated Killing vector field on \mathbb{R}^3 that extends \mathcal{I} .

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^3 .

1. Consider the Killing vector field along γ in the direction of the binormal, that is,

$$\mathcal{I} = (\kappa - \mu)^{p-1} B.$$

- 2. Let's denote by ξ the associated Killing vector field on \mathbb{R}^3 that extends \mathcal{I} .
- 3. Since \mathbb{R}^3 is complete, we have the one-parameter group of isometries determined by the flow of ξ is given by $\{\phi_t, t \in \mathbb{R}\}$.

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^3 .

1. Consider the Killing vector field along γ in the direction of the binormal, that is,

$$\mathcal{I} = (\kappa - \mu)^{p-1} B.$$

- 2. Let's denote by ξ the associated Killing vector field on \mathbb{R}^3 that extends \mathcal{I} .
- 3. Since \mathbb{R}^3 is complete, we have the one-parameter group of isometries determined by the flow of ξ is given by $\{\phi_t, t \in \mathbb{R}\}$.
- 4. Now, construct the surface $S_{\gamma} := \{x(s, t) := \phi_t(\gamma(s))\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

The surface S_{γ} is a ξ -invariant surface,

・ロト・日本・モート モー うへぐ

The surface S_{γ} is a ξ -invariant surface, and it verifies:

• S_{γ} is a rotational surface.

The surface S_{γ} is a ξ -invariant surface, and it verifies:

• S_{γ} is a rotational surface.

THEOREM [1]

Let γ be a planar curve, then, the BES with initial condition γ is either, a flat isoparametric surface, if κ is constant; or a rotational surface, if κ is not constant.

The surface S_{γ} is a ξ -invariant surface, and it verifies:

• S_{γ} is a rotational surface.

THEOREM [1]

Let γ be a planar curve, then, the BES with initial condition γ is either, a flat isoparametric surface, if κ is constant; or a rotational surface, if κ is not constant.

• The principal curvatures of S_{γ} are related by $\kappa_1 = a \kappa_2 + b$.

The surface S_{γ} is a ξ -invariant surface, and it verifies:

• S_{γ} is a rotational surface.

THEOREM [1]

Let γ be a planar curve, then, the BES with initial condition γ is either, a flat isoparametric surface, if κ is constant; or a rotational surface, if κ is not constant.

• The principal curvatures of S_{γ} are related by $\kappa_1 = a \kappa_2 + b$.

THEOREM [4]

Let γ be a planar p-Elasticae, then, the BES generated by γ verifies $\kappa_1 = a \kappa_2 + b$, for

$$a=rac{p}{p-1}\,,\quad b=rac{-\mu}{p-1}\,.$$

ROTATIONAL LINEAR WEINGARTEN SURFACES

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

ROTATIONAL LINEAR WEINGARTEN SURFACES

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Weingarten Surfaces

ROTATIONAL LINEAR WEINGARTEN SURFACES

- 1. Weingarten Surfaces
- 2. Classification of Rotational Linear Weingarten Surfaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ROTATIONAL LINEAR WEINGARTEN SURFACES

- 1. Weingarten Surfaces
- 2. Classification of Rotational Linear Weingarten Surfaces

3. Characterization of Profile Curves

A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$.

A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here we consider the linear relation

$$\kappa_1 = a\kappa_2 + b,$$

where $a, b \in \mathbb{R}$, $a \neq 0$.

A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here we consider the linear relation

$$\kappa_1 = a\kappa_2 + b,$$

where $a, b \in \mathbb{R}$, $a \neq 0$.

A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here we consider the linear relation

$$\kappa_1 = a\kappa_2 + b,$$

where $a, b \in \mathbb{R}$, $a \neq 0$.

Well-known families of linear Weingarten surfaces are:

• Umbilical Surfaces (Plane and Sphere)

A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here we consider the linear relation

$$\kappa_1 = a\kappa_2 + b,$$

where $a, b \in \mathbb{R}$, $a \neq 0$.

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)

A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here we consider the linear relation

$$\kappa_1 = a\kappa_2 + b,$$

where $a, b \in \mathbb{R}$, $a \neq 0$.

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)
- Constant Mean Curvature Surfaces

A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here we consider the linear relation

$$\kappa_1 = a\kappa_2 + b,$$

where $a, b \in \mathbb{R}$, $a \neq 0$.

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)
- Constant Mean Curvature Surfaces (Rotational Case: Delaunay Surfaces)

Classification (b = 0)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

CLASSIFICATION (b = 0)

THEOREM [4]

The rotational linear Weingarten surfaces satisfying the relation $\kappa_1 = a\kappa_2$, $a \neq 0$, are planes, ovaloids and catenoid-type surfaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CLASSIFICATION (b = 0)

THEOREM [4]

The rotational linear Weingarten surfaces satisfying the relation $\kappa_1 = a\kappa_2$, $a \neq 0$, are planes, ovaloids and catenoid-type surfaces.

Moreover,

• Case a > 0. The rotational surface is an ovaloid.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CLASSIFICATION (b = 0)

THEOREM [4]

The rotational linear Weingarten surfaces satisfying the relation $\kappa_1 = a\kappa_2$, $a \neq 0$, are planes, ovaloids and catenoid-type surfaces.

Moreover,

• Case a < 0. The rotational surface is of catenoid-type.

(A) a < -1

Classification $(a > 0 \text{ and } b \neq 0)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

CLASSIFICATION $(a > 0 \text{ and } b \neq 0)$

THEOREM [4]

Let a > 0 and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

CLASSIFICATION $(a > 0 \text{ and } b \neq 0)$

THEOREM [4]

Let a > 0 and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

• Vesicle-Type Surfaces

Classification $(a > 0 \text{ and } b \neq 0)$

THEOREM [4]

Let a > 0 and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

• Pinched Spheroid

CLASSIFICATION $(a > 0 \text{ and } b \neq 0)$

THEOREM [4]

Let a > 0 and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

• Immersed Spheroid

Classification $(a > 0 \text{ and } b \neq 0)$

THEOREM [4]

Let a > 0 and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

• Cylindrical Antinodoid-Type Surfaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CLASSIFICATION $(a > 0 \text{ and } b \neq 0)$

THEOREM [4]

Let a > 0 and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

Antinodoid-Type Surfaces

Classification $(\textit{a} < 0 \text{ and } \textit{b} \neq 0)$

<□ > < @ > < E > < E > E のQ @

Classification $(a < 0 \text{ and } b \neq 0)$

THEOREM [4]

Let a < 0 and $b \neq 0$. The rotational linear Weingarten surfaces are unduloid-type, circular cylinders, spheres and nodoid-type.

Classification $(a < 0 \text{ and } b \neq 0)$

THEOREM [4]

Let a < 0 and $b \neq 0$. The rotational linear Weingarten surfaces are unduloid-type, circular cylinders, spheres and nodoid-type.

• Unduloid-Type Surfaces

CLASSIFICATION $(a < 0 \text{ and } b \neq 0)$

THEOREM [4]

Let a < 0 and $b \neq 0$. The rotational linear Weingarten surfaces are unduloid-type, circular cylinders, spheres and nodoid-type.

Nodoid-Type Surfaces

A rotational surface M can be, locally, described by

$$M = S_{\gamma} := \{x(s,t) = \phi_t(\gamma(s))\},\$$

A rotational surface M can be, locally, described by

$$M = S_{\gamma} := \{x(s,t) = \phi_t(\gamma(s))\},\$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where,

• ϕ_t is the rotation,

A rotational surface M can be, locally, described by

$$M = S_{\gamma} := \{x(s,t) = \phi_t(\gamma(s))\},\$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

where,

- ϕ_t is the rotation, and
- γ(s) is the profile curve (that is, the curve everywhere orthogonal to the orbits of φ_t).

A rotational surface M can be, locally, described by

$$M = S_{\gamma} := \{x(s,t) = \phi_t(\gamma(s))\},\$$

where,

- ϕ_t is the rotation, and
- γ(s) is the profile curve (that is, the curve everywhere orthogonal to the orbits of φ_t).

Then,

THEOREM [4]

Let *M* be a rotational linear Weingarten surface and let $\gamma(s)$ be its profile curve.

A rotational surface M can be, locally, described by

$$M = S_{\gamma} := \{x(s,t) = \phi_t(\gamma(s))\},\$$

where,

- ϕ_t is the rotation, and
- γ(s) is the profile curve (that is, the curve everywhere
 orthogonal to the orbits of φ_t).

Then,

THEOREM [4]

Let *M* be a rotational linear Weingarten surface and let $\gamma(s)$ be its profile curve. Then, if $a \neq 1$, γ is a planar p-Elastic curve for

$$\mu = \frac{-b}{a-1}, \quad p = \frac{a}{a-1}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$BES + PLANAR P-ELASTICA \iff ROTATIONAL LW$

BES + PLANAR P-ELASTICA \iff ROTATIONAL LW Binormal evolution surfaces generated from planar p-Elasticae, are precisely, rotational linear Weingarten surfaces with $a \neq 1$.

BES + PLANAR P-ELASTICA \iff ROTATIONAL LW Binormal evolution surfaces generated from planar p-Elasticae, are precisely, rotational linear Weingarten surfaces with $a \neq 1$.

 \Leftarrow [4] Every rotational linear Weingarten surface (with $a \neq 1$) admits a geodesic foliation by planar p-Elasticae.

BES + PLANAR P-ELASTICA \iff ROTATIONAL LW Binormal evolution surfaces generated from planar p-Elasticae, are precisely, rotational linear Weingarten surfaces with $a \neq 1$.

 \leftarrow [4] Every rotational linear Weingarten surface (with $a \neq 1$) admits a geodesic foliation by planar p-Elasticae.

 $\implies [1]+[4]$ The evolution under the binormal flow of any planar p-Elasticae generates rotational linear Weingarten surfaces.

REMARKABLE PARTICULAR CASES

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

REMARKABLE PARTICULAR CASES

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$1. \ \mbox{Classic Elastic Curves and Mylar Balloons}$

Remarkable Particular Cases

- 1. Classic Elastic Curves and Mylar Balloons
- 2. Extended Blaschke's Energy and Delaunay Surfaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CLASSIC ELASTIC CURVES

Take p = 2 and $\mu = 0$ in the p-elastic energy. That is, we have the bending energy

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \kappa^2 \, .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CLASSIC ELASTIC CURVES

Take p = 2 and $\mu = 0$ in the p-elastic energy. That is, we have the bending energy

$${oldsymbol \Theta}(\gamma) = \int_{\gamma} \kappa^2 \, .$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Critical curves of bending energy are elastic curves.

Take p = 2 and $\mu = 0$ in the p-elastic energy. That is, we have the bending energy

$${oldsymbol \Theta}(\gamma) = \int_{\gamma} \kappa^2 \, .$$

Critical curves of bending energy are elastic curves.

CURVATURE OF PLANAR ELASTIC CURVES

Solving the Euler-Lagrange equations, we obtain that the non-geodesic planar elastic curves have curvature given by

$$\kappa(s) = \kappa_o cn\left(\frac{\kappa_o}{\sqrt{2}}s, \frac{\sqrt{2}}{2}\right)$$

Take p = 2 and $\mu = 0$ in the p-elastic energy. That is, we have the bending energy

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \kappa^2 \, .$$

Critical curves of bending energy are elastic curves.

CURVATURE OF PLANAR ELASTIC CURVES

Solving the Euler-Lagrange equations, we obtain that the non-geodesic planar elastic curves have curvature given by

$$\kappa(s) = \kappa_o cn\left(\frac{\kappa_o}{\sqrt{2}}s, \frac{\sqrt{2}}{2}\right)$$

κ_o = κ_o(d) is a constant (the maximum curvature) and cn denotes the Jacobi cosine.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PROFILE CURVES OF MYLAR BALLOONS

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_1 = 2\kappa_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

PROFILE CURVES OF MYLAR BALLOONS

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_1 = 2\kappa_2$. Furthermore, the converse is also true.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PROFILE CURVES OF MYLAR BALLOONS

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_1 = 2\kappa_2$. Furthermore, the converse is also true.

• These rotational surfaces are essentially unique (up to translations and homotheties).

PROFILE CURVES OF MYLAR BALLOONS

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_1 = 2\kappa_2$. Furthermore, the converse is also true.

• These rotational surfaces are essentially unique (up to translations and homotheties). They are called Mylar Balloons.

PROFILE CURVES OF MYLAR BALLOONS

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_1 = 2\kappa_2$. Furthermore, the converse is also true.

- These rotational surfaces are essentially unique (up to translations and homotheties). They are called Mylar Balloons.
- We also know that, planar elastic curves verify $x(s) = \frac{2\kappa(s)}{\sqrt{d}}$.

PROFILE CURVES OF MYLAR BALLOONS

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_1 = 2\kappa_2$. Furthermore, the converse is also true.

- These rotational surfaces are essentially unique (up to translations and homotheties). They are called Mylar Balloons.
- We also know that, planar elastic curves verify $x(s) = \frac{2\kappa(s)}{\sqrt{d}}$.
- Thus, after rotating we obtain the parametrization of Mylar Balloons:

$$x(s, heta) = rac{1}{\sqrt{d}} \left(2\kappa\cos heta, \, 2\kappa\sin heta\,, \, \int \kappa^2\,ds
ight)\,,$$

where $\kappa(s)$ is the curvature of γ .

EXTENDED BLASCHKE'S ENERGY

Take $p = \frac{1}{2}$ in the p-Elastic energy, that is,

$$oldsymbol{\Theta}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} = \int_{0}^{L} \sqrt{\kappa(s) - \mu} \, ds \, .$$

$$oldsymbol{\Theta}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} = \int_{0}^{L} \sqrt{\kappa(s) - \mu} \, ds \, .$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

1. If $\kappa = \mu$ then γ is an absolute minima for Θ .

$$oldsymbol{\Theta}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} = \int_{0}^{L} \sqrt{\kappa(s) - \mu} \, ds \, .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. If $\kappa = \mu$ then γ is an absolute minima for Θ .

2. Now, let γ be a non-constant curvature critical curve.

$$oldsymbol{\Theta}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} = \int_{0}^{L} \sqrt{\kappa(s) - \mu} \, ds \, .$$

1. If $\kappa = \mu$ then γ is an absolute minima for Θ . 2. Now, let γ be a non-constant curvature critical curve. Then,

$$\kappa(s) = \frac{4d}{1+16d^2s^2},$$

for every d > 0 if $\mu = 0$.

$$\mathbf{\Theta}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} = \int_{0}^{L} \sqrt{\kappa(s) - \mu} \, ds \, .$$

1. If $\kappa = \mu$ then γ is an absolute minima for Θ . 2. Now, let γ be a non-constant curvature critical curve. Then,

$$\kappa(s) = rac{4d}{1+16d^2s^2},$$

for every d > 0 if $\mu = 0$. Or, if $\mu \neq 0$,

$$\kappa(s) = rac{2\mu(\omega^2 + \omega \sin 2\mu s)}{1 + \omega^2 + 2\omega \sin 2\mu s},$$

where $\omega^2 = 1 + \frac{\mu}{d}$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Case $\kappa = \mu$.

Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For the critical curves with non-constant curvature we have

Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.

For the critical curves with non-constant curvature we have

GEOMETRIC CHARACTERIZATION [2]

Non-constant curvature critical curves for the extended Blaschke's energy in \mathbb{R}^2 are, precisely, the roulettes of conic foci with non-constant curvature.

Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.

For the critical curves with non-constant curvature we have

GEOMETRIC CHARACTERIZATION [2]

Non-constant curvature critical curves for the extended Blaschke's energy in \mathbb{R}^2 are, precisely, the roulettes of conic foci with non-constant curvature.

• If
$$\mu = 0$$
, we have catenaries.

Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.

For the critical curves with non-constant curvature we have

GEOMETRIC CHARACTERIZATION [2]

Non-constant curvature critical curves for the extended Blaschke's energy in \mathbb{R}^2 are, precisely, the roulettes of conic foci with non-constant curvature.

- If $\mu = 0$, we have catenaries.
- If $\mu \neq 0$ and $\omega < 1$, they are nodaries.

Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.

For the critical curves with non-constant curvature we have

GEOMETRIC CHARACTERIZATION [2]

Non-constant curvature critical curves for the extended Blaschke's energy in \mathbb{R}^2 are, precisely, the roulettes of conic foci with non-constant curvature.

- If $\mu = 0$, we have catenaries.
- If $\mu \neq 0$ and $\omega < 1$, they are nodaries.
- If $\mu \neq 0$ and $\omega > 1$, they are undularies.

In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^3

DELAUNAY SURFACES

A rotational surface has constant mean curvature, if and only if, its profile curve is the roulette of a conic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^3

DELAUNAY SURFACES

A rotational surface has constant mean curvature, if and only if, its profile curve is the roulette of a conic.

CHARACTERIZATION OF DELAUNAY SURFACES [2]

A Delaunay surface is, precisely, a binormal evolution surface with a critical curve for the extended Blaschke's energy as initial condition.

In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^3

DELAUNAY SURFACES

A rotational surface has constant mean curvature, if and only if, its profile curve is the roulette of a conic.

CHARACTERIZATION OF DELAUNAY SURFACES [2]

A Delaunay surface is, precisely, a binormal evolution surface with a critical curve for the extended Blaschke's energy as initial condition. Moreover, the constant mean curvature is given by

$$H = -\mu.$$

References

- 1. J. Arroyo, O. J. Garay and A. Pámpano, Binormal Motion of Curves with Constant Torsion in 3-Spaces, *Adv. Math. Phys.*, **2017** (2017).
- J. Arroyo, O. J. Garay and A. Pámpano, Constant Mean Curvature Invariant Surfaces and Extremals of Curvature Energies, J. Math. Annal. and App., 462 (2018), 1644-1668.
- 3. O. J. Garay and A. Pámpano, A Note on p-Elasticae and the Generalized EMP Equation, *submitted*.
- 4. R. López and A. Pámpano, Classification of Rotational Surfaces in Euclidean Space Satisfying a Linear Relation Between their Principal Curvatures, *submitted*.

THE END

Acknowledgements: Research partially supported by MINECO-FEDER, MTM2014-54804-P and by Gobierno Vasco, IT1094-16.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?